2259556.ru

Журнал Мастера
22 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Секционный выключатель принцип действия

АВР должен автоматически переключаться с минимальной временной задержкой, от 0.1сек до 0.3сек, на резервный источник питания после отключения рабочего источника питания.

АВР должен автоматически переключать рабочий и аварийный источники питания, в случае исчезновения напряжения на шинах потребителей, независимо от причины отсутствия напряжения на шинах питания. В случае срабатывания в блоке АВР дуговой защиты блок АВР может быть заблокирован, чтобы уменьшить повреждения автоматики блока АВР от короткого замыкания. При определенных условиях требуется задержка переключения АВР. К примеру, при запуске мощных устройств на стороне потребителя, схема АВР должна игнорировать просадку (падение напряжения) напряжения.

АВР должен автоматически переключиться на резервный источник питания и автоматически переключиться обратно на основной источник питания только в случаи включения рабочего источника питания с временной задержкой, что бы исключить перекрестное короткое замыкание.

Для блока АВР можно использовать различные схемы управления:

РЗиА это релейная системы защиты здесь применяются приборы различного назначения (реле, контакторы).

Цифровые блоки с помощью контроллеров и переключателей, элементов индикации — изделий, включающих в себя механическую коммутацию.

Принцип работы АВР

Рис №1. Принципиальная схема АВР на подстанции 35/6(10) кВ, применяемая для выполнения секционирования

Работа схемы заключается вводом в работу секционного высоковольтного масляного (элегазового или вакуумного) выключателя для подачи резервного питания на секцию, на которой пропало напряжение, с рабочей секции.

Обязательное условие рабочего состояния схемы является включенное положение переключателя АВР – П. Реле АВР однократного действия, должно постоянно находиться под напряжением, его контакты остаются замкнуты пока переключатель 1В1 во включенном состоянии. Отсутствие напряжения на высоковольтных шинах секции вызывает замыкание размыкающих контактов реле защиты от появления минимального напряжения. Статическое реле времени с часовым механизмом типа 1РВ срабатывает и через минимальную выдержку времени отправляет сигнал к отключению силового трансформатора неисправной цепи в описываемом случае – Т1.

Основные требования к АВР

  • Резервный источник должен включаться за минимальное количество времени.
  • АВР должен всегда срабатывать в моменты падения напряжения на связующих шинах потребителей источников энергии, вне зависимости от причины.
  • Для системы резервного ввода должно быть характерно однократное срабатывание. Это требование обусловлено невозможностью корректной работы всей системы «умного дома» с наличием вероятности возникновения короткого замыкания.

Принцип действия

В качестве измерительного органа для АВР в высоковольтных сетях служат реле минимального напряжения, подключенные к защищаемым участкам через трансформаторы напряжения. В случае снижения напряжения на защищаемом участке электрической сети реле дает сигнал в схему АВР. Однако условие отсутствия напряжения не является достаточным для того, чтобы устройство АВР начало свою работу. Как правило, должен быть удовлетворен еще ряд условий:

  • На защищаемом участке нет неустраненного короткого замыкания. Так как понижение напряжения может быть связано с коротким замыканием, включение дополнительных источников питания в эту цепь нецелесообразно и недопустимо.
  • Вводной выключатель включен. Это условие проверяется, чтобы АВР не сработало, когда напряжение исчезло из-за того, что вводной выключатель был отключен намеренно.
  • На соседнем участке, от которого предполагается получать питание после действия АВР, напряжение присутствует. Если обе питающие линии находятся не под напряжением, то переключение не имеет смысла.

После проверки выполнения всех этих условий логическая часть АВР дает сигнал на отключение вводного выключателя обесточенной части электрической сети и на включение межлинейного (или секционного) выключателя. Причем межлинейный выключатель включается только после того, как вводной выключатель отключился.

Применение

Согласно ПУЭ все потребители электрической энергии делятся на три категории: I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, угрозу для безопасности государства, нарушение сложных технологических процессов и пр. II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта. III категория — все остальные потребители электроэнергии.

Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьёзным последствиям. Бесперебойное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:

  • Токикороткого замыкания при такой схеме гораздо выше, чем при раздельном питании потребителей.
  • В питающих трансформаторах выше потери электроэнергии
  • Релейная защита сложнее, чем при раздельном питании.
  • Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определенного режима работы системы.
  • В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования.
Читать еще:  Выключатель кнопочный старт стоп

В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет АВР. АВР может подключить отдельный источник электроэнергии (генератор, аккумуляторную батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.

При проектировании схемы АВР, допускающей включение секционного выключателя, важно учитывать пропускную способность питающего трансформатора и мощность источника энергии, питающих параллельную систему. В противном случае может получиться так, что переключение на питание от параллельной системы выведет из строя и её, так как источник питания не сможет справиться с суммарной нагрузкой обеих систем. В случае если невозможно подобрать такой источник питания, обычно предусматривают такую логику защиты, которая отключит наименее важных потребителей тока обеих систем.

АВР разделяют на:

  • АВР одностороннего действия. В таких схемах присутствует одна рабочая секция питающей сети, и одна резервная. В случае потери питания рабочей секции АВР подключит резервную секцию.
  • АВР двухстороннего действия. В этой схеме любая из двух линий может быть как рабочей, так и резервной.
  • АВР с восстановлением. Если на отключенном вводе вновь появляется напряжение, то с выдержкой времени он включается, а секционный выключатель отключается. Если кратковременная параллельная работа двух источников не допустима, то сначала отключается секционный выключатель, а затем включается вводной. Схема вернулась в исходное состояние.
  • АВР без восстановления.

Примеры схем АВР

Начнем рассмотрение схем с одного пункта, который лучше сразу обозначить. Разница между схемами АВР “автомат+пускатель” и “автомат с электроприводом” в экономичности последнего варианта на токи начиная от 200 ампер, меньшем месте в шкафу и большей устойчивости к перегрузкам, возникающим при включениях. Но в зависимости от схем, это решение должно приниматься индивидуально. А так в любой схеме вместо автомата с пускателем можно установить автомат с электроприводом.

Схема АВР для двух вводов на контакторе

Значит, тут у нас два ввода. У каждого ввода есть вводной автомат или рубильник. Также присутствует третий автомат, который отвечает за нагрузку потребителя. И главную роль в этом театре играет контактор, который я обозначил К1. У него есть обмотка и два контакта — нормально закрытый и нормально открытый. Принцип работы схемы в следующем: при пропадании напряжения пропадает питание с обмотки К1 и контакты перекидываются.

Недостатки данной схемы в том, что при моржках света питание будет кидать туда-обратно. Это конечно не даст Вам остаться без света, но сам контактор, а именно его контакты, потреплет знатно, вплоть до замены. Так как через них будет проходить весь ток. Поэтому токи при такой схеме должны быть небольшими. Да и для нагрузки такие режимы не есть хорошо.

Схема АВР с магнитными пускателями

Пускай в этой схеме пускатели будут обозначены К1 и К2. Хотя обычно пускатели обозначают КМ, даже называю их “каэм’ы”. Данная схема может быть однофазная или трехфазная. Я нарисовал её однофазной, так проще и быстрее. Значит, принцип работы в следующем: включаем “ввод №1” и тут же размыкается контакт К1 в со стороны нуля обмотки К2. Затем включаем “Ввод №2”, обмотка К2 уже разомкнута и следовательно контакт К2 в схеме нуля К1 не разомкнется и не вызовет отключение К1. Далее, если пропадает питание на вводе №1, то контакт К1 в схеме нуля К2 обратно становится замкнутым, питание доходит до обмотки с двух сторон и пускатель К2 срабатывает. Пускатель К1 у нас отключен и следовательно питание происходит от второго ввода. Если вновь появится напряжение на вводе №1, то для возврата надо будет вручную отключать второй ввод и включать первый. Это не очень то удобно.

В данной схеме получается, что рабочим вводом будет тот, который включить в первую очередь. Тоже не вызывает сильного доверия, но на первое время сойдет. Чтобы питание переключалось обратно на первый ввод можно установить реле напряжения. Значит, его обмотка будет подключена параллельно цепочке “катушкаК1 — контактК2”, а его контакт замкнутый последовательно в цепочку “катушкаК2 — контактК1”. Не забываем следить за рабочим током нагрузки и контактов пускателей.

Читать еще:  Выключатели напряжения выше 1000

Схема АВр на три ввода

В большинстве своем схема авр на три ввода представляет из себя два ввода плюс дизельгенератор. Суть её работы: при исчезновении питания на первом вводе, включается второй, а при исчезновении двух вводов сразу — включается ДГ. При повторном появлении электроэнергии на одном из двух вводов питание переходит от дизельгенератора на вновь включенный ввод. Данные схемы самому реализовать себе во вред, так как есть готовые решения — законфигурированные мозги, куда надо просто подключить провода и задать уставки. Нечто подобное рассматривалось в статье про БАВРы.

Если хотите более подробно ознакомиться с заводскими исполнениями схем АВР, то поисковые системы выдают множество pdf файлов различных изготовителей.

Сохраните в закладки или поделитесь с друзьями

Основные технические характеристики щитов АВР

  • Щиты АВР комплектуется оборудованием концерна (Германия)
  • Номинальная рабочий ток АС-1 – 16…800А.
  • Номинальное рабочее напряжение Ue – 220/380В.
  • Номинальное рабочее напряжение Ue цепей управления – 220В.
  • Номинальное импульсное выдерживаемое напряжение Uimp – 6 кВ
  • Уровень защиты от пыли и влаги в зависимости от вариантов – IP31 и IP65.
  • Рабочая температура от –5°С до +40°С.

Требования к устройствам АВР, принципы их выполнения и расчет параметров

В системах электроснабжения при наличии двух (и более) источников питания часто целесообразно работать по разомкнутой схеме. При этом все источники включены, но не связаны между собой, каждый из них обеспечивает питание выделенных потребителей. Такой режим работы сети объясняется необходимостью уменьшить ток к. з., упростить релейную защиту, создать необходимый режим по напряжению, уменьшить потери электроэнергии и т. п. Однако при этом надежность электроснабжения в разомкнутых сетях оказывается более низкой, чем в замкнутых, так как отключение единственного источника приводит к прекращению питания всех его потребителей. Электроснабжения потребителей, потерявших питание, можно восстановить автоматическим подключением к другому источнику питания с помощью устройства автоматического включения резервного источника.

Применяют различные схемы АВР, однако все они должны удовлетворять изложенным ниже основным требованиям.

  1. Находиться в состоянии постоянной готовности к действию и срабатывать при прекращении питания потребителей по любой причине и наличии нормального напряжения на другом, резервное для данных потребителей источнике питания. Чтобы не допустить включения резервного источника на короткое замыкание, линия рабочего источника к моменту действия должна быть отключена выключателем со стороны шин потребителей. Отключенное состояние этого выключателя контролируется его вспомогательными контактами или реле положения, и эти контакты должны быть использованы в схеме включения выключателя резервного источника. Признаком прекращения питания является исчезновение напряжения на шинах потребителей, поэтому воздействующей величиной устройства обычно является напряжение. При снижении напряжения до определенного значения АВР приходит в действие.
  2. Иметь минимально возможное время срабатывания tАВР1. Это необходимо для сокращения продолжительности перерыва питания потребителей и обеспечения самозапуска электродвигателей. Минимальное время tАВР1 определяется необходимостью исключить срабатывания при коротких замыканиях на элементах сети, связанных с рабочим источником питания, если при этом напряжение на резервируемых шинах станет ниже напряжения срабатывания устройства. Эти повреждения отключаются быстродействующими защитами поврежденных элементов. При выборе выдержки времени необходимо также согласовывать действие АВР с действием других устройств, расположенных ближе к рабочему источнику питания.
  3. Обладать однократностью действия, что необходимо для предотвращения многократного включения резервного источника на устойчивое короткое замыкание.
  4. Обеспечивать вместе с защитой быстрое отключение резервного источника питания и его потребителей от поврежденной резервируемой секции шин и тем самым сохранять их нормальную работу. Для этого предусматривается ускорение защиты после АВР.
  5. Не допускать опасных несинхронных включений синхронных электродвигателей и перегрузок оборудования.

В зависимости от конструкции коммутационного аппарата, схемы электроснабжения и ее номинального напряжения основные требования к устройствам выполняются по-разному (например, устройства АВР в сетях напряжением до 1 кВ).

Пусковые органы и выбор параметров. В качестве примера рассмотрим АВР на секционном выключателе схемы сети

(рис.10.11,а). В этой схеме шины секционированы; секционный выключатель Q5 отключен. Каждая секция питается от отдельного источника. Схему можно выполнить так, что устройство будет действовать на включение секционного выключателя Q5 при отключении любого из источников питания и исчезновения напряжения на любой секции шин. В том случае осуществляется взаимное резервирование с помощью АВР двухстороннего действия.

Читать еще:  Как обозначение двухполюсного выключателя

Но прежде чем включить выключатель Q5, устройство АВР должно отключить выключатель Q2 или Q4, если он остался включенным при исчезновении напряжения на соответствующей секции шин. Для этой цели в схему вводят пусковой орган, в котором обычно применяют минимальные реле напряжения. В общем случае АВР содержит также орган выдержки времени. Если резервируемой является одна из секций, например секция 1, то АВР включает выключатель Q5 только при исчезновении напряжения на этой секции, предварительно отключив выключатель Q2, т. е. осуществляет одностороннее действие. Для удовлетворения основных требований, предъявляемых к АВР, параметры пускового органа и органа выдержки времени выбирают следующим образом.

Минимальный пусковой орган напряжения должен срабатывать при понижениях напряжения на шинах, например секции 1, до Uост.к, вызванных короткими замыканиями в точках Ki—Кз (за элементами с сосредоточенными параметрами). Эти повреждения обычно отключаются защитой с выдержкой времени третьей ступени tIIIс.з. Характер изменения напряжения на шинах секции 1 и напряжение срабатывания показаны на рис. 10.11, в.

Uс.р1 tс.з.max + Δ t

В некоторых схемах пусковой орган (минимальное реле напряжения) и орган выдержки времени объединены в одном реле. Если на резервируемом элементе системы электроснабжения (например, на линии Л1) имеется устройство Автоматического Повторного Включения (АПВ), то время tАВР1. должно согласовываться с временем действия АПВ tАПВ1чтобы АВР действовало только после неуспешного действия АПВ. Для этого время tАВР1, полученное из выражения (10.9), Необходимо увеличить при однократном АПВ на значение tАПВ1. Если в системе электроснабжения (рис. 10.11, а) наряду с рассматриваемым устройством устройство, расположенное ближе к рабочему источнику питания, то его время действия tАВР1. выбирается с учетом сказанного, а для рассматриваемого АВР должно выполняться дополнительное условие. Время tзап в зависимости от типов выключателей и реле времени в схемах принимается 2-3 с.

В условиях эксплуатации случаются перегорания предохранителей или другие неисправности в цепях трансформаторов напряжения. При этом возможны срабатывания минимальных реле напряжения пускового органа. Для предотвращения ложных действий устройства имеется ряд способов, например в пусковом органе используют два минимальных реле напряжения, включенные на разные трансформаторы напряжения. Для этих же целей в пусковом органе вместе с минимальным реле напряжения используют минимальное реле тока, включенное на ток питающей линии Л1 (рис. 10.11, а). Такой комбинированный пусковой орган срабатывает лишь тогда, когда вместе с исчезновением напряжения на шинах исчезает ток в линии. Ток срабатывания реле отстраивается от минимального рабочего тока Iраб.min питающей линии по условию

В этом случае выдержка времени tАВР1, определяемая из условия (10.9), согласуется только с защитой, действующей при к.з. в точке К6. Если к резервируемым шинам подключены синхронные электродвигатели и компенсаторы, то при отключении рабочего источника питания на шинах в течение некоторого времени поддерживается остаточное напряжение благодаря разряду электромагнитной энергии, запасенной этими электродвигателями и компенсаторами. Значение этого напряжения снижается постепенно, поэтому минимальное реле напряжения может подействовать с замедлением, достигающим tс.р=1 с и более. Такое замедление нежелательно. Избежать его можно, если вместо минимального реле напряжения использовать реле понижения частоты. Это возможно, так как снижается не только значение, но и частота остаточного напряжения, причем время снижения частоты до значения уставки срабатывания, равной 46—47 Гц, обычно не превышает 0,2—0,3с, т. е. всегда значительно меньше, чем время снижения остаточного напряжения от первоначального значения до уставки срабатывания минимального реле напряжения. Действие устройства имеет смысл при наличии напряжения на резервном источнике питания. Поэтому в пусковой орган включают максимальное реле напряжения, контролирующее наличие напряжения на резервном источнике питания, на шинах секции II. При минимальном рабочем напряжении Uраб.min реле должно находиться в состоянии после срабатывания, разрешая действие пускового органа. Это обеспечивается выбором его напряжения срабатывания по условию

где Котс = 1,5. 1,7 — коэффициент отстройки; Кв = 0,8 — коэффициент возврата.

В расчетах обычно принимают Uc.p.2 = (0,65. 0,7) (Uном/Ки). Требование однократности действия удовлетворяется, если принять продолжительность воздействия на включение выключателя Q5 (рис. 10.11, а)

где tв.в — время включения выключателя Q5; tзап = 0,3. 0,5 с.

Включенный от АВР выключатель должен иметь защиту, действующую с ускорением после АВР. В том случае, если при действии АВР резервный источник питания перегружается и не обеспечивает самозапуск электродвигателей, следует отключить часть нагрузки, например, минимальной защитой напряжения.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты