2259556.ru

Журнал Мастера
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатор для светодиодов с ограничения по току

Стабилизатор тока на LM317 для светодиодов

Рассмотрим самый простой вариант изготовления светодиодного драйвера своими руками с минимальными затратами времени. Для расчёта стабилизатора тока на LM317 для светодиодов используем калькулятор, которому необходимо указать требуемую силу тока для LED диодов. Предварительно составьте схему включения светодиодов, учитывая максимальную мощность микросхемы и блока питания для светодиодов. Заранее поищите систему охлаждения для всей конструкции.

  • 1. Схема подключения
  • 2. Пример расчётов и сборки
  • 3. Основные электрические характеристики
  • 4. Импульсные драйверы

Калькулятор

Товары c aliexpress, новинки, обзоры. Диагностика автомобилей Vag. Ретрофит фар

  • Перейти на страницу:

Как надежно запитать светодиоды, чтобы и не сгорали. LM317

Сообщение light » 13 мар 2008, 23:45

LM317 в стабилизаторе тока светодиодов.
Или, как надежно запитать светодиоды, чтобы горели и не сгорали.

Пройдет еще 5-10 лет и
твердотельные источники
света вытеснят все
остальные.

В настоящее время в нашу жизнь интенсивно внедряются светодиоды. Основная проблема оказывается как из запитать. Дело в том, что главным параметром для долговечности светодиода является не напряжение его питание, а ток который по нему течет. Например, красные светодиоды по напряжению питания могут иметь разброс от 1.8 вольта до 2,6, белые от 3,0 до 3,7 вольта. Даже в одной партии одного производителя могут встречаться светодиоды с разным рабочим напряжением. Нюанс заключается в том, что светодиоды изготовленные на основе AlInGaP/GaAs (красные, желтые, зеленые — классические) довольно хорошо выдерживают перегрузку по току, а светодиоды на основе GaInN/GaN (синие, зеленые (сине-зеленые), белые) при перегрузке по току например в 2 раза живут . часа 2-3. Так, что если желаете чтобы светодиод горел и не сгорел в течении ходя бы 5 лет позаботьтесь о его питании.

Если мы устанавливаем светодиоды в цепочки (последовательное соединение) или подключаем параллельно добиться одинаковой светимости можно только если протекающий ток будет через них одинаков.

Еще хочу заострить внимание на том что светодиоды очень боятся обратного напряжения, оно очень низкое 5 — 6 вольт, импульсы обратного тока (а автомашинах) способны значительно сократить срок службы.

Значить как сделать самый простой стабилизатор тока?

[spoiler=как сделать самый простой стабилизатор тока]

Для тех кто не знает Vin — это сюда подается напряжение, Vout — отсюда получаем. а Adjust вход регулировки. В двух словах LM317 это стабилизатор с регулируемым выходным напряжением. Минимальное выходное напряжение 1,25 вольта (это если Adjust «посадить» прямо на землю) и до входного напряжения минус наши 1,25 вольта. Т.К. максимальное входное напряжение составляет 37 вольт, то можно делать стабилизаторы тока до 37 вольт соответственно.

Для того чтобы LM317 превратить в стабилизатор напряжения нужен всего 1 резистор!

Схема включения выглядит следующим образом:

А теперь пример с учетом всего выше сказанного. Сделаем стабилизатор тока для белых светодиодов с рабочим током 20 мА, условия эксплуатации автомобиль (сейчас так моден световой тюннинг. ).

Для белых светодиодов рабочее напряжение в среднем равно 3,2 вольта. В автомашине (легковой) бортовое напряжение колеблется (в опять же среднем) от 11,6 вольт в режиме работы от аккумулятора и до 14,2 вольта при работающем двигателе. Для российских машин учтем выбросы в «обратке» (и в прямом направлении до 100 ! вольт).

Включить последовательно можно только 3 светодиода — 3,2*3 = 9,6 вольта, плюс 1,25 падение на стабилизаторе = 10,85. Плюс диод от обратного напряжения 0,6 вольта = 11,45 вольта.

Читать еще:  Экономическая плотность тока алюминиевых жил кабелей

Полученное значение 11,45 вольта ниже самого низкого напряжения в автомобиле — это хорошо! Это значит на выходе будет всегда наши 20 мА независимо от напряжения в бортовой сети автомобиля. Для защиты от выбросов положительной полярности поставим после диода супрессор на 24 вольта.

P.S. Подбирайте количество светодиодов так чтобы на стабилизаторе оставалось как можно меньше напряжения (но не меньше 1,3 вольта), это надо для уменьшения рассеиваемой мощности на самом стабилизаторе. Это особенно важно для больших токов. И не забудьте, что на токи от 350 мА и выше LMка потребует радиатор.

Вот и все!

наша схема, удачи Вам!

В принципе супрессор для дешевых светодиодов можно и не ставить, н о диод для в автомобиле обязателен! Рекомендую его ставить даже если вы просто подключаете светодиоды с гасящим резистором.

Как рассчитывать сопротивление резистора для светодиодов я думаю описывать излишне, но если надо пишите на форуме.

Еще забыл: — по схеме, если непонятно! На К1 подаем плюс «+», а на К2 минус (на шасси автомашины садим).

Re: Как надежно запитать светодиоды, чтобы и не сгорали. LM

Сообщение Ozon » 19 мар 2008, 01:09

Данная статья не претендует на оригинальность.
[spoiler=Описываемый стабилизатор обладает следующими характеристиками:]Описываемый стабилизатор обладает следующими характеристиками:
• максимальный ток — 2 А
• выходное напряжение 1,25 — 12 В
• максимальная рассеиваемая мощность — 15А
• стабилизация по входу — 0,01%/В
• стабилизация по нагрузке — 0,1%
• ослабление пульсаций — 80 дБ
Основным элементом стабилизатора является замечательная микросхема LM317T. В микросхеме имеется полная защита от перегузок, ограничения по току, тепловая защита. Все выше перечисленные защиты отлично работают в отличие , от аналогов отечественного производства.
Схема стабилизатора очень проста и не требует практически ни каких пояснений.
Резистор R2 является регулятором выходного напряжения. При минимуме R2 напряжение на выходе стабилизатора минимально — 1,25 В. При максимуме соответственно максимально (если отключить нижний по схеме вывод R2, то Uвых равно Uвх).
Несколько слов о конструктивных особенностях стабилизаторов на микросхемах серии LM117/LM217/LM317.
На входе стабилизатора рекомендуется использовать шунтирующий керамический конденсатор емкостью 0,1 мкф или танталовый 1 мкф включенный как можно ближе к выводам стабилизатора. Не рекомендуется шунтировать выход стабилизатора емкостями в диапазоне от 500 до 5000 пФ, т.к. это приводит к чрезмерному «звону» выходного напряжения.
Резистор R1 следует подключать непосредственно вблизи выводов стабилизатора. Подключение данного резистора вблизи нагрузки достаточно сильно снижает стабилизацию. Резистор R2 необходимо подключать верхним по схеме выводом так же ближе к стабилизатору, а провод от нижнего вывода ближе к нагрузке.
Ток корый может выдержать стабилизатор конечно маловат, но это не страшно, т.к. стабилизаторы можно включать паралельно. К каждой микросхеме-стабилизатору всего лишь необходимо подключить свои Д1, Д2 и включить в имеющеюся схему стабилизатора. Таким образом можно изготавливать блоки питания на 15 А и более. Входные и выходные напряжения так же могут варироваться в больших пределах главное, что бы разница между входным и выходным напряжением не привышала 40 вольт!
Следует помнить при установке микросхем на радиатор, что фланец микросхемы следует изолировать от радиатора, т.к. на фланце присутствует напряжение Uвых.
Более подробную информацию можно найти на сайте производителей (National Semiconductor).
HamFan

Читать еще:  Розетка кабельная 16а ip54

Схемы линейных устройств

Самая простейшая схема стабилизатора – это схема, построенная на основе LM317 для светодиода. Последний являются аналогом стабилитрона с определенным рабочим током, который он может пропускать. Учитывая малую силу тока можно собрать простой аппарат самостоятельно. Наиболее простой драйвер светодиодных ламп и лент собирают именно таким способом.

Микросхема LM317 уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На её основе можно собрать регулируемый блок питания, светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, модуль работает сразу, настройки не требуется.

Интегральный стабилизатор LM317 как никакой другой подходит для создания несложных регулируемых блоков питания, для электронных устройств с разными характеристиками, как с регулируемым выходным напряжением, так и с заданными параметрами нагрузки.

Основное назначение это стабилизация заданных параметров. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.

Выпускаются LM317 в монолитных корпусах, исполненных в нескольких вариациях. Самая распространённая модель TO-220 с маркировкой LM317Т.

Каждый вывод микросхемы имеет свое предназначение:

  • ADJUST. Ввод для регулирования выходного напряжения.
  • OUTPUT. Ввод для формирования выходного напряжения.
  • INPUT. Ввод для подачи питающего напряжения.

Технические показатели стабилизатора:

  • Напряжение на выходе в пределах 1,2–37 В.
  • Защита от перегрузки и КЗ.
  • Погрешность выходного напряжения 0,1%.
  • Схема включения с регулируемым выходным напряжением.

Краткое описание lm317

Радиоэлектронный модуль LM317 является микросхемой, применяемой в семах стабилизации тока и напряжения.

  • Диапазон стабилизации напряжения от 1,7 до 37 В обеспечит устойчивую яркость светодиода, не зависящую от частоты оборота двигателя;
  • Поддержка выходного тока до 1,5 А позволит подключить несколько фотоизлучателей;
  • Высокая стабильность допускает колебания выходных параметров лишь 0,1% от номинала;
  • Имеет встроенную защиту по ограничению тока и каскад отключения при перегреве;
  • Корпус микросхемы является землёй, поэтому при креплении саморезом к корпусу автомобиля уменьшается количество монтажных проводов.

Область применения

  • Стабилизатор напряжения и тока для светодиодов в бытовых условиях (в том числе для светодиодных лент);
  • Стабилизатор напряжения и тока для светодиодов в авто;

Последовательное соединение

Наиболее простой способ. Все светодиоды подключаем гирляндой друг за другом. Катод первого к аноду второго и т.д. Необходимый светодиодам при параллельном соединении ток не зависит от количества светодиодов и составляет 25мА. Ещё потребуется учесть падение напряжения на каждом светодиоде. Пытливый читатель, дружащий с математикой, сейчас должен был запнуться. Падение напряжения рассчитывается как сумма падения напряжения для всех светодиодов. Да ещё и нужно оставить запас. Запас стоит оставлять из-за того, что светодиоды не идеальны. Падение напряжения сильно колеблется даже у светодиодов одного производителя и в одной партии. Падение зависит от температуры, да ещё и растёт по мере старения светодиода. У нас падение составит 15*3 = 45В. А источник всего на 12 вольт. Этот вариант отпадает. Последовательно мы можем позволить себе подключить только 12/4 = 4 светодиода. С запасом всего 3 светодиода в параллели. Теперь можно подключить перед цепочкой из трёх светодиодов токоограничительный резистор на 480 Ом (R = 12/0.025 = 480) и радоваться. Все три светодиода теперь получают ток в 25мА. Но неидеальность светодиодов означает, что нам может попасться экземпляр, который рассчитан на ток всего лишь в 20мА. Или чуть меньше. Или чуть больше. Неважно. Важно то, что наши рассчитанные 25mA окажутся избыточными. Такой светодиод начнёт греться и перегорит раньше других. Он перестанет пропускать через себя ток. Тогда все остальные светодиоды тоже погаснут. Последовательное подключение — недостаточно надёжная схема. Один перегоревший светодиод нарушает работу всей цепочки.

Читать еще:  Выключатель для внутренней подсветки

Достоинства: простая и дешёвая схема, низкое потребление тока.
Недостатки: необходимость в источнике питания с большим вольтажом, крайне низкая надёжность схемы.

Последовательное подключение трёх светодиодов

Итак, последовательно нам удалось соединить только 3 светодиода. Но что если требуется подключить все 15?

Калькулятор расчета сопротивления резистора для светодиода

Сразу приведу калькулятор для тех кто не хочет углубляться в теорию.
Для расчета сопротивления резистора для светодиода нам потребуются следующие данные:

Введите все данные и получите сопротивление резистора в Омах.(Если нужно ввести дробные величины, то нужно использовать десятичную точку, а не запятую.)

Для питания светодиодов обычно приспосабливают источники питания на 5В или 12В. В принципе это может быть любой источник питания, главное чтобы его выходное напряжение было больше чем напряжение которое должно быть на светодиоде минимум на 10-15%, чем больше разница между напряжением БП и светодиода, тем будет лучше стабильность тока, но будет хуже КПД схемы.
Максимальный ток блока питания тоже должен быть равен или больше чем ток необходимый для светодиода. Если ток окажется меньше то светодиод не будет гореть в полную силу.
Падение тока на светодиоде — справочная величина, чем короче длинная волны испускаемого света тем выше напряжение падения. Так для светодиодов красного и зеленого свечения, величина падения 1,5 — 2,5В, для синих, ультрафиолетовых и белых 3 — 3,5В.
Ток светодиода также справочный параметр, но вместо него может указываться мощность светодиода в Ваттах. И чтобы получить ток нужно будет поделить мощность на напряжение. Например светодиод на мощность 1Вт и напряжение 3,3В должен потреблять 0,3А или 300мА тока.

Когда все данные получены расчет резистора для светодиода не составит труда: сначала определяем падение напряжение на резисторе, для этого из напряжения питания вычитаем падение на светодиоде. А теперь по закону Ома делим это напряжение на ток, в результате и имеем сопротивление.
Если напряжения указаны в Вольтах, а токи в Амперах, то сопротивление получиться в Омах. Если использовать миллиАмперы, то сопротивление будет в килоОмах.

Простое зарядное устройство для литиевого аккумулятора.

Главное отличие зарядного устройства от блока питания – четкое ограничение зарядного тока. Следующая схема имеет два режима ограничения:
— по току;
— по напряжению;

Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается.
На следующей схеме ограничение тока осуществляют транзисторы VT1, VT2 и резисторы R1-R3. Резистор R1 выполняет функцию шунта, когда напряжение на нем превышает 0,6 В (порог открывания VT1), транзистор VT1 открывается и закрывает транзистор VT2. Из-за этого падает напряжение на базе VT3 он начинает закрываться и следовательно снижается выходное напряжение, а это ведет к снижению выходного тока. Таким образом работает обратная связь по току и его стабилизация. Когда напряжение подбирается к уровню 4,2 В в работу начинает вступать DA1 и ограничивать напряжение на выходе зарядного устройства.

А теперь список номиналов компонентов схемы:

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты